Fluorescently Labeled Methyl-Beta-Cyclodextrin Enters Intestinal Epithelial Caco-2 Cells by Fluid-Phase Endocytosis
نویسندگان
چکیده
Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB) on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10(-8) cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.
منابع مشابه
Ganglioside GM1 levels are a determinant of the extent of caveolae/raft-dependent endocytosis of cholera toxin to the Golgi apparatus.
Cholera toxin is associated with caveolae and raft domains in various cell types and previous studies have shown that cholera toxin can be internalized by caveolae/raft-dependent endocytosis as well as by other pathways. We undertook the study of cholera toxin endocytosis in CaCo-2 and HeLa cells. CaCo-2 cells do not express detectable levels of caveolin and, relative to HeLa cells, also presen...
متن کاملThe Critical Role of Membrane Cholesterol in Salmonella-Induced Autophagy in Intestinal Epithelial Cells
It was previously observed that plasma membrane cholesterol plays a critical role in the Salmonella-induced phosphatidylinositol 3-kinase-dependent (PI3K)-dependent anti-inflammatory response in intestinal epithelial cells (IECs). The PI3K/Akt pathway is associated with autophagy which has emerged as a critical mechanism of host defense against several intracellular bacterial pathogens. Plasma ...
متن کاملInternalization of cholera toxin by different endocytic mechanisms.
The mechanism of cholera toxin (CT) internalization has been investigated using Caco-2 cells transfected with caveolin to induce formation of caveolae, HeLa cells with inducible synthesis of mutant dynamin (K44A) and BHK cells in which antisense mRNA to clathrin heavy chain can be induced. Here we show that endocytosis and the ability of CT to increase the level of cAMP were unaltered in caveol...
متن کاملUncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol.
To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipi...
متن کاملHeterogeneity of Raft-type membrane microdomains associated with VP4, the rotavirus spike protein, in Caco-2 and MA 104 cells.
Previous studies have shown that rotavirus virions, a major cause of infantile diarrhea, assemble within small intestinal enterocytes and are released at the apical pole without significant cell lysis. In contrast, for the poorly differentiated kidney epithelial MA 104 cells, which have been used extensively to study rotavirus assembly, it has been shown that rotavirus is released by cell lysis...
متن کامل